Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano
1.
Cytotherapy ; 25(6 Supplement):S72, 2023.
Artigo em Inglês | EMBASE | ID: covidwho-20239522

RESUMO

Background & Aim: The pro-angiogenic, immunoregulatory and anti- inflammatory properties of MSCs are being exploited for the development of cellular therapies, including the treatment of graft versus host disease (GvHD), inflammatory bowel disease and COVID-19. SNBTS have developed a GMP process to bank umbilical cord MSCs (UC-MSCs) whereby we can reliably bank 100 vials of 10 million P2 UC-MSCs per cord. Each of these vials can be extensively expanded and stored for specific applications. The ultimate aim of the bank is for off-the-shelf clinical use, e.g., in GvHD or as an adjuvant therapy in Islet transplantations. Methods, Results & Conclusion(s): During process development, different basal media and supplements were screened for proliferation and MSC marker expression. Cells grown in promising media combinations were then tested for tri-lineage differentiation (identity), their chemokine/cytokine expression and T-cell inhibition (function) assessed. Medium selected for further GMP development and scale up was ultimately determined by all round performance and regulatory compliance. GMP-like UC-MSCs were shown to have immune-modulatory activity in T-cell proliferation assays at 4:1 or 16:1 ratios. Co-culture of UC-MSCs and freshly isolated leukocytes, +/- the immune activating agent LPS, show a dose dependent survival effect on leukocytes. In particular, neutrophils, which are normally very short lived in vitro demonstrated increased viability when co-cultured with UCMSCs. The survival effect was partially reproduced when UC-MSC were replaced with conditioned medium or cell lysate indicating the involvement of soluble factors. This improved neutrophil survival also correlates with results from leukocyte migration studies that demonstrate neutrophils to be the main cell type attracted to MSCs in in vitro and in vivo. Genetic modification of UC-MSC may improve their therapeutic potential. We have tested gene editing by CRISPR/Cas9 technology in primary UC-MSCS. The CXCL8 gene, highly expressed in UC-MSC, was targeted in isolates from several different donors with editing efficiencies of 78-96% observed. This translated to significant knockdown of CXCL8 protein levels in resting cells, however after stimulation levels of CXCL8 were found to be very similar in edited and non-edited UC-MSCs. This observation requires further study, but overall the results show the potential to generate future banks of primary UC-MSCS with genetically enhanced pro-angiogenic, immunoregulatory and/or anti-inflammatory activities.Copyright © 2023 International Society for Cell & Gene Therapy

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA